UAV (AKA DRONE)
TECHNOLOGY IN TRANSPORTATION PROJECTS

CO-PRESENTER’S:
WALT OLSEN, P.E. DEPUTY DIRECTOR
JIM AYRES P.E., DESIGN SYSTEMS ENGINEER
WASHINGTON STATE COUNTY ROAD ADMINISTRATION (CRAB)

Washington State Transportation Commission
Meeting March 15th, 2016
Purpose of presentation is to:
Provide a fundamental understanding of UAV's and how they can operate Safely and Effectively in Transportation Projects.

Contents:
1. UAV Applications in the Public Arena.
2. History and types of Drones & UAV’s.
3. Why should we use UAV's for Transportation Projects?
4. Examples of Fixed Winged UAV’s & Rotary UAV’s.
5. How to utilize the UAV data for Transportation purposes.
6. Current FAA authorization requirements to fly an UAV.
UAV Applications in the Public Works Arena

- Information Technology is one of CRAB’s Core Missions.
- Investigate and research innovative, cost effective, technical strategies for counties for possible implementation.
- Drone or UAV’s (Unmanned Aerial Vehicles) technology has grown rapidly over the last decade and the future growth is almost assured.
- Data obtained from UAV’s is 1% to 10% of the cost of conventional aircraft.
- Owner controlled data with better quality, clarity, and safer.
- Data gathered and processed for usage more quickly.
UAV Applications in the Public Works Arena

- **Inspections**
 - Existing Bridge Structures (routine, damage, replacement)
 - Quarry and pit site operations and depletion surveys
 - Waste site operations and cell development surveys
 - Construction project progress and conflict resolution surveys

- **Mapping and Surveying**
 - Aerial Photography
 - LIDAR data for 3D modeling of surfaces
 - Environmental assessments and evaluations
UAV Applications in the Public Works Arena

- Observation and Monitoring
 - Wildland Fire
 - Search and Rescue
 - Environmental Incidents
 - Transportation Incidents
 - Pre-emergency/disaster reconnaissance and warning systems
 - Emergency/disaster response
 - Post-emergency/disaster recovery efforts
- Legal records and documentation
Jim Ayres, P.E.
Washington State County Road Administration Board (CRAB)

* Design Systems Engineer CRAB
 1999- present

* Grays Harbor County Public Works
 Civil Engineer 1986 -1999

* BSCE St. Martin’s University ‘86
DRONE (pre UAV) History

- **Early 1940’s German V1 – Buzz Bomb**
- **2000’s M-9 Reaper**
- **Military Insect UAV (rumored)**
- **2000’s Remotely Piloted Vehicle (RPV)**
- **Today’s Hobbyist Drones**
UAV/UAS Altitude by Class

<table>
<thead>
<tr>
<th>Class</th>
<th>Altitude (feet)</th>
<th>Endurance (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HAE</td>
<td>70K</td>
<td>10</td>
</tr>
<tr>
<td>Global Hawk</td>
<td>60K</td>
<td>20</td>
</tr>
<tr>
<td>Heron 1</td>
<td>50K</td>
<td>30</td>
</tr>
<tr>
<td>Heron 2</td>
<td>40K</td>
<td>30</td>
</tr>
<tr>
<td>Predator A</td>
<td>30K</td>
<td>20</td>
</tr>
<tr>
<td>Predator B</td>
<td>20K</td>
<td>10</td>
</tr>
<tr>
<td>Eagle Eye</td>
<td>10K</td>
<td>0</td>
</tr>
</tbody>
</table>

UAV's

Commercial

Medium

Tactical

Endurance (hours)

Altitude
Filling The Gap (Infographic)

UAV’s vs Other Geospatial Data Sources

- Extensive coverage
 - Wide spectral capabilities including LiDAR
- Relatively low-resolution (down to 30 cm/pixel)
 - Image timing controlled by provider
 - Limited coverage in some regions
 - Imagery susceptible to cloud cover

- Large single-flight coverage
 - High-resolution (down to 7 cm/pixel)
 - Wide spectral capabilities including LiDAR
- Typically expensive (not suited to smaller projects)
 - Image timing controlled by provider (if external)
 - Specific flight approval can be required
 - Operations susceptible to weather
 - Aircraft availability may be limited in remote regions

- Cost-effective (suitable for smaller projects)
 - Imagery can be acquired on demand
 - Very high-resolution (fixed-wing: 2.5 cm/pixel, rotary: sub-millimetre)
 - Typically unaffected by cloud cover (due to lower flight altitudes)
 - Excellent positional accuracy with GCPs or RTK
- Relatively small single-flight coverage
 - Drone regulations or bans can restrict usage
 - Operations susceptible to bad weather
 - No canopy penetration (unless heavy LiDAR payload)
 - Difficult to reconstruct imagery with few tie points (for example, imagery of homogenous terrain or water)

- Excellent positional accuracy
 - Just the data required (no data overload)
 - Very high resolution
 - On the go data classification (vector/meta-data)
- Slow, labour-intensive collection
 - Equipment can be expensive (e.g. laser scanner)
 - Line-of-sight issues
 - Difficult to record tops of features
 - Some sites inaccessible on foot
 - Limited graphical outputs (depending upon equipment)
Why use UAV’s for Transportation Projects?

1. High Precision UAV mapping accuracy is similar to GPS

2. Worker Safety & Labor spent mapping using a UAV is considerably lower than GPS Surveying

3. Photographic Data – Quality Assured
County Demonstration Project Scope

- Utilize UAV technology in case studies at various locations through Washington State.
- Investigate & Evaluate the UAV’s capabilities and effectiveness in improving Mapping and Reducing Mapping/Inspection costs.
- UAV technologies were investigated to evaluate their capabilities as they relate to county road and bridge projects.
Today’s Transportation Inspection & Surveying Tools....
Two Types of UAV: Fixed-wing vs Rotorcraft

<table>
<thead>
<tr>
<th>Feature</th>
<th>Large Areas</th>
<th>Small Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coverage</td>
<td>Large Areas</td>
<td>Small Areas</td>
</tr>
<tr>
<td>Takeoff & landing</td>
<td>Linear</td>
<td>Spot</td>
</tr>
<tr>
<td>Object resolution</td>
<td>Inch/pixel</td>
<td>mm/pixel</td>
</tr>
<tr>
<td>Oblique Imagery</td>
<td>0° to -50°</td>
<td>+90° to -90°</td>
</tr>
<tr>
<td>3D Mapping of Infrastructure</td>
<td>Difficult</td>
<td>Much easier</td>
</tr>
<tr>
<td>Close-up Inspection</td>
<td>Not adapted</td>
<td>Well adapted</td>
</tr>
</tbody>
</table>
Each UAV Type Produces Geo-referenced orthomosaics, Digital Surface Models, and Point Clouds
Example of Fixed Winged UAV’s
The UAV is good to go for launch -

Phyllis Kanyer, Kitsap County Surveyor
THIS IS A COMPOSIT OF THE PHOTOS TAKEN DURING THE FLIGHT.

129 PHOTOS WERE TAKEN, ONLY 124 WERE USED DUE TO THE EAGLE.
THE SOFTWARE CONVERTS THE PHOTOS INTO A DIGITAL SURFACE MODEL.

STOCK PILES CAN BE SELECTED AND VOLUMNS CALCULATED.
Photographic rich data seamlessly imported into a design System CAD program for surface creation.
Design System Software

- Point Cloud Creation
- Surface Creation
Stockpile Surface Quality Comparison and Volumes

Field Demo Results:
- Flight distance: > 2.6 Miles
- Land area mapped: > 30 acres
- Total flight time: 9 minutes

Conventional Survey Surface:
Volume = 4,236 C.Y.

UAV Surface:
Volume = 3,838 C.Y.
Types of Rotorcraft UAV’s
3 typical applications
Bridge inspection
Bridge inspection: Arch Condition Rating
Bridge inspection: Girder rebar
Bridge inspection: piers
Bridge Pier – Mapping Cracks
Cracks detection and monitoring
Rock Face Inspection's

- 15 minutes flight
- 36 ft distance from cliff
- 0.01 Ft. or 0.3 cm / pixel.

- Cracks & potential rockfalls clearly visible (useful for volume / mass estimation & reinforcement planning)
Truss Bridge inspection:
Bridge inspection: Substructure difficult to Access.
Bridge inspection: Use of InfraRed Payload
INFRASTRUCTURE ARCHIVE MODELING
Congress Tells FAA to Get Busy

License Timeline

- **February 3, 2012** – Incorporate UAS ops safely into the NAS system without being a huge burden on the owners/operators, which they are obligated by congress to do so, in the [Airspace Modernization Act of 2012](https://www.congress.gov/112/plaws/statute/2012).
- **March 7, 2012** – Issued notice it was looking for 6 test sites
- **May 14, 2012** – Public Safety can fly up to 25 lbs. UAV’s without license:
 - UAS must be flown within the LOS (line of sight) of the operator,
 - less than 400 feet above the ground,
 - during daylight conditions, and
 - inside Class G (uncontrolled) airspace and more than five miles from any airport or other location with aviation activities.

Current FAA regulation 333 Exemption is the only current system for commercial UAS compliance.

Until FAA Part 107 rules proposed for 2016...
What’s different about Part 107 from Section 333?

- No need for previously licensed FAA pilot as operator.
- An extra VO (Visual Observer) is not required for flights.
- No need for Air Traffic Control clearance in class G airspace.

This is a big deal!
In conclusion, UAV Technology in transportation projects:

1. When compared to conventional aircraft, because a UAV is easier, safer, and more efficient.

2. High Precision UAV mapping accuracy is comparable to GPS accuracy.